leetcode 310. 最小高度树

对于一个具有树特征的无向图,我们可选择任何一个节点作为根。图因此可以成为树,在所有可能的树中,具有最小高度的树被称为最小高度树。给出这样的一个图,写出一个函数找到所有的最小高度树并返回他们的根节点。

格式

该图包含 n 个节点,标记为 0 到 n - 1。给定数字 n 和一个无向边 edges 列表(每一个边都是一对标签)。

你可以假设没有重复的边会出现在 edges 中。由于所有的边都是无向边, [0, 1]和 [1, 0] 是相同的,因此不会同时出现在 edges 里。

示例 1:

输入: n = 4, edges = [[1, 0], [1, 2], [1, 3]]

        0
        |
        1
       / \
      2   3 

输出: [1]

示例 2:

输入: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

     0  1  2
      \ | /
        3
        |
        4
        |
        5 

输出: [3, 4]

说明:

  • 根据树的定义,树是一个无向图,其中任何两个顶点只通过一条路径连接。 换句话说,一个任何没有简单环路的连通图都是一棵树。
  • 树的高度是指根节点和叶子节点之间最长向下路径上边的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution:
def findMinHeightTrees(self, n, edges):
if n == 1: return [0]
adj = [set() for _ in xrange(n)]
for i, j in edges:
adj[i].add(j)
adj[j].add(i)

leaves = [i for i in xrange(n) if len(adj[i]) == 1]

while n > 2:
n -= len(leaves)
newLeaves = []
for i in leaves:
j = adj[i].pop()
adj[j].remove(i)
if len(adj[j]) == 1: newLeaves.append(j)
leaves = newLeaves
return leaves