给定一个已排序的正整数数组 nums,和一个正整数 n 。从 [1, n]
区间内选取任意个数字补充到 nums 中,使得 [1, n]
区间内的任何数字都可以用 nums 中某几个数字的和来表示。请输出满足上述要求的最少需要补充的数字个数。
示例 1:
输入: nums = [1,3], n = 6 输出: 1 解释: 根据 nums 里现有的组合 [1], [3], [1,3],可以得出 1, 3, 4。 现在如果我们将 2 添加到 nums 中, 组合变为: [1], [2], [3], [1,3], [2,3], [1,2,3]。 其和可以表示数字 1, 2, 3, 4, 5, 6,能够覆盖 [1, 6] 区间里所有的数。 所以我们最少需要添加一个数字。
示例 2:
输入: nums = [1,5,10], n = 20 输出: 2 解释: 我们需要添加 [2, 4]。
示例 3:
输入: nums = [1,2,2], n = 5 输出: 0
- mysolution
1 | def greedy(nums,n): |
- clear solution
1 | def greedy(nums,n): |